
ORIGINAL PAPER

R. Aldrin Denny á M.V. Sangaranarayanan

Dynamics of electron hopping in redox polymer electrodes
using kinetic Ising model

Received: 27 May 1997 /Accepted: 24 July 1997

Abstract The analysis of di�usion-migration equations
pertaining to electron hopping and physical displace-
ment in redox polymer electrodes is carried out using
kinetic Ising model formalism. It is shown that, by the
appropriate choice of transition probabilities obeying
detailed balancing conditions, a hierarchy of transport
equations can be derived. Earlier transport equations
due to Nernst-Planck and SaveÂ ant are derived as special
cases. The dependence of apparent di�usion coe�cient
on number density of redox centres, polymer morphol-
ogy etc. are pointed out. Several new insights concerning
the microscopic basis underlying the hitherto known
phenomenological equations are demonstrated.
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Introduction

The study of charge transport in redox polymer elec-
trodes is a fascinating topic of research on account of its
importance in diverse ®elds such as molecular electronic
devices [1], biosensors [2], immobilization of enzymes
onto electrode surfaces [3] etc. Further, transport of
charges through these supramolecular structures may
involve various processes such as di�usion of species,
counterion movement, ion pair formation, electron
transfer between spatially separated redox centers etc.
Among these phenomena, analysis of electron transfer
between redox centers is a challenging task on account of
(1) non-validity of classical Nernst-Planck equation, (2)
random distribution of molecules, (3) restricted physical

displacement caused by the polymer backbone and (4)
®eld-assisted electron hopping. Hence the preliminary
step in the analysis of charge transport consists in for-
mulating transport equations pertaining to nearest
neighbor electron hopping, and this was ®rst provided by
SaveÂ ant [4] using chemical kinetic schemes and subse-
quently rediscovered by other methods (cf. [5]). Further,
the methodology of incorporating long-distance electron
transfer with rate constants exponentially decaying with
distance was attempted [6]. In all the above endeavors,
the focus of attention was the number density depen-
dence of the electron di�usion coe�cient. An issue that
has not been extensively analyzed is the competition
between electron hopping and physical displacement and
the consequent dependence of the e�ective di�usion co-
e�cient on concentration, potential di�erence etc. A re-
cent Monte Carlo simulation in this context indicates a
rich percolation behavior for two- and three-dimensional
lattices [7].

The purpose of this communication is to report a
time-dependent di�usion migration equation that takes
into account the physical displacement as well as near-
est-neighbor electron hopping. Our formalism makes use
of the kinetic Ising model approach wherein explicit
formulation of transition probabilities using Kawasaki
rates is postulated.

Model and analysis

Let us consider a uniform regular lattice x consisting of
N lattice sites and over which NT molecules of A and B
are present, the number of vacant sites being NV. Both
particles A and B are assumed to be charged species, and
the charges present in A and B are zA and zB respec-
tively. The basic stochastic step involved in this x lattice
is the physical ``bounded'' displacement. Thus particle A
attempts to move in the lattice ®eld at a randomly se-
lected location j with rate kP

ji, and this is successful only if
the nearest neighboring site i is vacant (the reverse jump
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from site i to j takes place with a rate kP
ij). This ele-

mentary displacement covers a distance of DX, which is
assumed to be the distance between the centers of the
two adjacent lattice points.

In addition to the ``bounded'' physical displacement,
electron hopping takes place on the sublattice X pro-
vided by particle B with ®eld-dependent rates. For
brevity, particle A is considered as electron donor
(electron) and B as an electron acceptor (hole),1 and
hence particle B is the lattice point for the electron
hopping. For the electron hopping to take place between
any adjacent sites i and j the pre-requisite is that one of
the two sites in the sublattice should be occupied by
particle A. When an electron hops from site i� j� to the
neighboring particle B at site j(i) with rate kE

ij (k
E
ji) the

particles A and B get interconverted. The average dis-
tance covered during this exchange process is d, which is
the center-to-center distance of closest approach be-
tween the two adjacent particles.

Under the Ising model formalism, individual sites in
the regular and sublattices have been assigned a spin
variable rX and rx, which can take a multiplicity of
possible values corresponding to the state that particular
site may be in. In this model we restrict ourselves to a
two-state Ising model, where the spin variable rx

j at site j
in the regular lattice takes the value of either +1 or ±1,
depending on whether the j th site is occupied (by A or B)
or vacant. Here we do not distinguish between particles
A and B, but it will be done explicitly when we consider

the sublattice using spin variable rX. The possible values
rX can take are +v and ±v, corresponding to the site
being occupied by A and B respectively.

The Generalized Master Equation

The time evolution of the normalized N spin distribution
function at time t, viz. PN �frgN ; t�, is
d

dt
PN �frgN ; t� �

X
hiji

Wij�rirjfrgij�PN �frgij
N �

ÿ
X
hiji

Wji�rjrifrgij�PN �frgN �

�
X
hjki

Wkj�rkrjfrgjk�PN �frgjk
N �

ÿ
X
hjki

Wjk�rjrkfrgjk�PN �frgN � �1�

where i and k are indices of the nearest neighbor
j; frgij

N and frgjk
N denote the spin con®gurations in

which rjri and rjrk are interchanged in their con®gu-
ration with respect to frgN (cf [8, 9]). W denotes tran-
sition probability. The above GME can be reduced by
substituting,

hji � Wji�rjrifrgij�PN �frgN ; t� �2�
and

hjk � Wjk�rjrkfrgjk�PN �frgN ; t� �3�

Fig. 1 Schematic representation
of various processes taking place
at sites i; j and k. Any loss to the
particle A at site j due to electron
hopping (adjacent site is B) or
particle displacement (adjacent
site is vacant) is represented by a
dotted line with the indicated
®eld-dependent jump frequency.
Any gain for particle A at site j is
represented by a full line

1 In the terminology of solid state physics, particle A and B can be
termed as electron and hole respectively
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and putting Pji and Pjk as the spin exchange operators,
which changes the con®guration of the spin variable, i.e.
Pji changes frgN to frgij

N , hence

o
ot

PN �frgN ; t� �
X
hiji
�Pjihji ÿ hji� �

X
hjki
�Pjkhjk ÿ hjk� �4�

�
X
hiji
�Pji ÿ 1�hji �

X
hjki
�Pjk ÿ 1�hjk �5�

Multiplying both sides in the above equation by rj

o
ot

PN �frgN ; t� �
X
frgN

rj

X
hiji
�Pji ÿ 1�hji

�
X
frgN

rj

X
hjki
�Pjk ÿ 1�hjk �6�

Since the summation operators commute with each
other, one can write,

ohrji
ot
�
X
frgN

X
hiji

rj�Pji ÿ 1�hji

�
X
frgN

X
hjki

rj�Pjk ÿ 1�hjk �7�

�
X
frgN2j

X
hiji

rj�Pji ÿ 1�hji

�
X
frgN 62j

X
hiji

rj�Pji ÿ 1�hji

�
X
frgN2j

X
hjki

rj�Pjk ÿ 1�hjk

�
X
frgN 62j

X
hjki

rj�Pjk ÿ 1�hjk �8�

For hiji 62 j; Pji and rj commute and for hiji 2 j; Pji and
rj anticommute i.e., one can elaborate it as shown be-
low:

for hiji 62 j Pjirj � Pjirj

and for hiji 2 j Pjirj � ÿPjirj

This is so because the Pij operator changes the sign of the
con®guration when it operates on the appropriate
function. So the above equation becomes,

ohrji
ot
�
X
frgN2j

X
hiji

rj�ÿPji ÿ 1�hji

�
X
frgN 62j

X
hiji

rj�Pji ÿ 1�hij

�
X
frgN2j

X
hjki

rj�ÿPjk ÿ 1�hjk

�
X
frgN 62j

X
hjki

rj�Pjk ÿ 1�hjk �9�

The reduced form of the master equation is obtained by
substituting back the hji and hjk values and also taking
into account

X
frgN

Pji �
X
frgN

Pjk � 1

The ®rst moment of the probability distribution, hrji
can thus be given as

ohrji
ot
�ÿ 2

X
hiji2j

hrjWji�rjrifrgij�i

ÿ 2
X
hjki2j

hrjWjk�rjrkfrgjk�i �10�

Equation 10 is also called the reduced master equation.
The conversion of the above microscopic equation into
gross phenomenological versions amenable for experi-
mental analysis involves several steps as indicated in
Fig. 2.

It is imperative at this stage to decipher the meaning
of a few terminologies employed above. The Wijs ap-
pearing in the generalized master equation (GME) are
transitional rates which are intrinsically coupled to rate
constants that one encounters in chemical kinetics. The
Ising model version appears while expressing the tran-
sition probabilites in terms of (pseudo) spin variables,
and usually is described using a two-state model (�1).
Because of the above subtle points, it has become cus-
tomary to call such approaches as based on kinetic Ising
model version (or equivalently non-equilibrium Ising
model). Such transitional rates are of two types, viz.: (1)
Spin ¯ip in the case of the adsorption-desorption prob-
lem where one usually deals with a single site. This rate is
known as Glauber dynamics. (2) Spin-exchange em-

Fig. 2 Steps involved in the conversion of GME into continuum
di�usion migration versions [10]
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ployed for kinetic processes where two types of sites are
involved at any given instant. This time dependence of
the con®gurational change involved in these two-site
exchanges is referred to as Kawasaki rate.

Formulation of transition probabilities

In order to formulate transition probabilities, the num-
ber of occupied and vacant sites needs to be determined.
In this two-state version,

vA � vB �
1� hrxi

2

� �
�11�

vV �
1ÿ hrxi

2

� �
�12�

in the case of x-lattice. Similarly, for X-sublatttice,

vA �
hvi � hrXi

2

� �
�13�

vB �
hvi ÿ hrXi

2

� �
�14�

Using the above de®nitions, the transition probabilities
that obey detailed balancing conditions may be written.

We have already mentioned that the transition
probability is dependent on the neighboring spin value
of the site under consideration. For example the pres-
ence and absence of a particle in a particular site is in-
dicated in terms of the spin variable. Thus the transition
probabilities for the electron hopping and particle dis-
placement occurring between sites i and j can be written
in terms of the spin variable rX and rx as

W E
ji �rjrifrgij� � kE

ji
vÿ rX

i

2v

� �
v� rX

j

2v

 !

� kE
ij

vÿ rX
j

2v

 !
v� rX

i

2v

� �
�15�

W P
ji �rjrifrjgij� � kP

ijf
1ÿ rx

j

2

� �
v� rX

i

2v

� �
� kP

jif
1ÿ rx

i

2

� �
v� rX

j

2v

 !
�16�

where f is the correlation factor. Analogous expressions
for W E

jk and W P
jk can be written. The electron transfer rate

constants appearing in the above equations from the
Hamiltonian can be derived as shown in the appendix.

kE
jj � kE exp

a0ne�/j ÿ /i�
kBT

� �
�17�

and

kE
ji � kE exp

ÿane�/j ÿ /i�
kBT

� �
�18�

where kE represents the standard heterogeneous rate
constant. Substitution of the rate constants into the
transition probabilities expression and then into the re-
duced GME (Eq. 10) ®nally leads to

ovA
ot
� Dap

(
o2vA
ox2
� Dnz

ape

DapkBT

"
o
ox

vA
o/
ox

� �

ÿ nDEvT

Dnz
ap

o
ox

v2A
o/
ox

� �#)
�19�

where

Dap � DP f �1ÿ v� � DEv �20�
Dnz

ap � zADap � �nÿ zA�DEv

with DE � kEd2 and DP � kP DX 2; zA represents charge of
the species and n denotes the number of electrons
transferred.

Discussion

Equation 19 represents the spatio-temporal di�usion
equation in a bias electric ®eld when electron hopping
and physical displacement occur simultaneously. It may
be noted that when vT ! 1, Eq. 19 leads to the transport
equation for nearest neighbor electron hopping origi-
nally derived by SaveÂ ant [4]. Similarly, when vT ! 0, the
classical Nernst-Planck equation is recovered from Eq.
19. This is not all. By modelling mean square displace-
ments d2 and DX 2 in terms of concentration of species,
diverse patterns of number density dependence of ef-
fective di�usion coe�cient may be analyzed. A chief
merit of kinetic Ising model formalism consists in the
formulation of the di�usion migration equation along
with the concentration dependence of the di�usion co-
e�cient. Furthermore, Eq. 19 itself can be subjected to
analysis of transient electrochemical experiments in or-
der to decipher the in¯uence of system parameters on the
observed current.

Fig. 3a, b Illustration of (a) spin ¯ip and (b) spin exchange processes.
Upward and downward arrows indicate the instantaneous con®gu-
rations of site(s), viz. �1 and ÿ1 respectively
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A few comments about the signi®cance of Eq. 20 are in
order here. This equation is identical to that derived by
SaveÂ ant using the method of random ¯ights and was
shown to hold good withMonte Carlo simulations below
the percolation threshold. We emphasise here that the
correlation factor f is in principle capable of taking into
account the diverse concentration dependence of Dap.
Furthermore, Eq. 19 represents a non-steady state di�u-
sion-migration equation when two competing transport
processes occur simultaneously (hitherto unknown).

A few salient features of such microscopic models
may be pointed out here. In the present analysis we have
focussed our attention on systems where both the oxi-
dized and the reduced form of the redox species are
electron transfer active. However, as suggested by
SaveÂ ant [11], ion aggression can also take place between
the redox-active species (A and/or B) and the supporting
electro inactive counterion (C) leading to an electron
transfer inactive species (D). Thus, in addition to the
electron hopping and ``bounded'' physical displacement,
ion pairing can also take place and a�ect the charge
propagation rate. The introduction of ion pairing into
the present formalism is possible.

A description of the electron hopping and physical
displacement when interaction between sites is present
may also be attempted within the kinetic Ising model
formalism. However, this involves incorporation of in-
teraction energy J in the Ising Hamiltonian and intro-
ducing it into the transport equation through the spin
exchange jump frequencies. The Ising Hamiltonian then
becomes,

HX �ÿ
X

j

hX
j

1ÿ rX
j

2

 !
ÿ J

X
hiji

1ÿ rX
j

2

 !
1ÿ rX

i

2

� �
�21�

However, products of spin variables rirj need a decou-
pling. At the simplest level, the molecular ®eld approx-
imation provides a primitive methodology, viz.
hrirji � hriihrji: Higher level approximations such as
``Bethe Ansatz'' may also be employed but will make the
analysis quite tedious.

Summary

The methodology of deriving spatio-temporal di�usion
migration equations for electron hopping coupled with
physical displacement process using kinetic Ising
model formalism is studied using a two-state lattice
model.

Appendix

Consider the energetics involved in electron hopping and
physical displacement. Let the potential at a site j be /j.

When there is no interaction between particles the total
Hamiltonian pertaining to electrostatic terms can be
represented as follows:

Hx
j � ÿ

X
j

hx
j

1� rx
j

2

� �
�A1�

HX
j � ÿ

X
j

hX
j

v� rX
j

2v

 !
�A2�

Under molecular ®eld approximation the above Hamil-
tonian can be modi®ed by incorporating terms such as
Jhriihrji; where J represents the composite interaction
energy parameter. The postulate of detailed balancing
enables us to formulate equalities among the transition
probabilities as given below,

Wji�rjrifrgij�P e
N �frgN ; t� �Wij�rirjfrgij�

� P e
N �frgij

N ; t� �A3�
Wkj�rkrjfrgjk�P e

N �frgjk
N ; t� �Wjk�rjrkfrgjk�

� P e
N �frgN ; t� �A4�

where P e
N represents the probabilities of the spin ex-

change under the equilibrium condition and it is related
to the Hamiltonian in the following manner

P e
N �frgij

N ; t�
P e

N �frgN ; t� � exp
ÿHij

kBT

� �
�A5�

where Hij �Hj ÿHi. In general, P e
N is given by

P e
N �

exp�ÿHij=kBT �
Z

�A6�

where Z represents the partition function. On account of
the independence of the electron hopping and physical
displacement process the transition probability can be
considered as a sum of those due to the individual
phenomena [11]. Hence

Wji�rjrifrgij� � W E
ji �rjrifrgij� � W P

ji �rjrifrgij� �A7�
The electric potential dependence of rate constant fol-
lows from Eqs. A3±A9, 15 and 16 as

kE
ji

kE
ij
� exp�ne�/i ÿ /j�=kBT � �A8�

kE
kj

kE
jk
� exp�ne�/j ÿ /k�=kBT � �A9�

Since the above equation gives the ratio of the electron
transfer frequencies it seems appropriate to introduce
the parameter kE

0 which is independent of potential.

kE
ij � kE

0 exp�ÿnE
1=kBT � �A10�

kE
ji � kE

0 exp�ÿnE
2=kBT � �A11�

On account of Eqs. A10 and A11 we may write
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nE
2 ÿ nE

1 � ne�/j ÿ /i� �A12�
Note that the above Eq. A12 gives the di�erence be-
tween nE

1 and nE
2 , which is still inadequate for our pur-

pose since we need explicit forms for these two
separately. Hence we introduce a factor a and a0 which
may be considered analogous to transfer coe�cient in
the electrochemical literature.

nE
1 � nE

0 ÿ a0ne�/j ÿ /i� �A13�
nE
2 � nE

0 � ane�/j ÿ /i� �A14�
and a� a0 � 1: In the above equations nE

0 are introduced
for the sake of generality to take into account any
morphological changes brought about in the polymer.
Now the exchange rate constants become

kE
ji � kE exp�ÿane�/j ÿ /i�=kBT � �A15�

kE
ij � kE exp�a0ne�/j ÿ /i�=kBT � �A16�
Similarly from Eq. A9 we obtain

kE
kj � kE exp�ane�/j ÿ /k�=kBT � �A17�

kE
jk � kE exp�ÿa0ne�/j ÿ /k�=kBT � �A18�
where

kE � kE
0 exp�ÿnE

0=kBT � �A19�

It is easy to recall that Eqs. A15±A18 represent the
potential dependence of electron hopping frequencies
(see for example [10]). Analogously, we can write for the
physical displacement process equations similar to Eqs.
A15±A18.
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